Requirements: Skills
A Bachelor’s degree in data science, statistics, computer science, or a similar field
2+ years industry experience working in a data science role, such as statistics, machine learning,
deep learning, quantitative financial analysis, data engineering or natural language processing
Domain experience in Financial Services (banking, insurance, risk, funds) is preferred
Have and experience and be involved in producing and rapidly delivering minimum viable products,
results focused with ability to prioritize the most impactful deliverables
Strong Applied Statistics capabilities. Including excellent understanding of Machine Learning
techniques and algorithms
Hands on experience preferable in implementing scalable Machine Learning solutions using Python /
Scala / Java on Azure, AWS or Google cloud platform
Experience with storage frameworks like Hadoop, Spark, Kafka etc
Experience in building &deploying unsupervised, semi-supervised, and supervised models and be
knowledgeable in various ML algorithms such as regression models, Tree-based algorithms,
ensemble learning techniques, distance-based ML algorithms etc
Ability to track down complex data quality and data integration issues, evaluate different algorithmic
approaches, and analyse data to solve problems.
Experience in implementing parallel processing and in-memory frameworks such as H2O.ai Skills:- Data Science, Natural Language Processing (NLP), Machine Learning (ML) and Deep Learning